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Abstract—Diagnosis of Alzheimer’s disease (AD) is often diffi-
cult, especially early in the disease process at the stage of mild
cognitive impairment (MCI). Yet, it is at this stage that treatment
is most likely to be effective, so there would be great advantages in
improving the diagnosis process. We describe and test a machine
learning approach for personalized and cost-effective diagnosis of
AD. It uses locally weighted learning to tailor a classifier model to
each patient and computes the sequence of biomarkers most infor-
mative or cost-effective to diagnose patients. Using ADNI data, we
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classified AD versus controls and MCI patients who progressed
to AD within a year, against those who did not. The approach
performed similarly to considering all data at once, while signifi-
cantly reducing the number (and cost) of the biomarkers needed
to achieve a confident diagnosis for each patient. Thus, it may con-
tribute to a personalized and effective detection of AD, and may
prove useful in clinical settings.

Index Terms—Alzheimer’s disease (AD), classification, cost, ma-
chine learning, mild cognitive impairment (MCI), personalization.

I. INTRODUCTION

R ECENT advances in technology have enabled the record-
ing of vast amounts of data. Machine learning methods

have been proposed to aid in the interpretation of such data
for clinical decision making and diagnosis [1]–[3]. However,
most current applications of machine learning fail to mimic the
personalized diagnostic process of real clinical settings [4].

In practice, the clinician decides which tests are most appro-
priate for each patient. If the results are conclusive, a diagnosis is
established. Otherwise, the clinician orders other tests for clarifi-
cation. All these decisions are tailored to the patient [4]. Instead,
most machine learning approaches apply the same classification
model to all patients with no tailoring of the diagnostic deci-
sions and they assume that all biomarkers are readily available
at once [5]–[7]. This is seldom the case and implies that pa-
tients would need to undergo a considerable number of clinical
procedures, which may be costly and/or invasive, even though
some tests may not be relevant for them. Thus, it is desirable
to develop new approaches to support clinicians in the early,
more effective (in terms of number of tests and/or cost), and
personalized detection of disease.

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease in older people [8]. There is a considerable delay
between the start of AD pathology and the clinical diagnosis of
AD dementia, which can only be confirmed by autopsy [8], [9].
Thus, it is very difficult to detect AD early and accurately [9],
and there is a need for intelligent means to support clinicians in
the personalized diagnosis of this disease [3].

To address such challenges, we test a proof-of-concept per-
sonalized classifier for AD dementia and mild cognitive impair-
ment (MCI) patients based on biomarkers [10]–[12]. We extend
previous analyses [4] to AD, including new feature selection
approaches, classifier, and measures of similarity between sub-
jects suitable for continuous variables. Our aim is to support
the clinician in the diagnosis process by providing him or her
with information about the patient’s probability of disease and
which biomarkers may be more informative. This approach is
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consistent with the emerging recommendations on diagnosis
across the spectrum of AD [13].

II. MATERIALS

A. ADNI Database

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.ucla.edu). The ADNI was launched in
2003 by the NIA, the NIBIB, the FDA, private pharmaceutical
companies and non-profit organizations. The primary goal of
ADNI has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other biolog-
ical markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and early
AD. For up-to-date information, see http://www.adni-info.org.

B. Retrieval of Variables

The ADNI database as of Dec. 14, 2011 was queried for
basic data (gender, age, years of education, and body mass in-
dex) and biomarkers—MRI entorhinal cortical thickness [10];
average level of PET glucose uptake [11]; number of ApoE ε4
alleles (measured from blood) [12]; levels of Aβ42 , total Tau,
phosphorylated pTau181p , 8-iso-PGF2a and 8,12-iso-iPF2a -VI
isoprostanes, and homocysteine in the cerebrospinal fluid [12];
and level of Aβ40 and Aβ42 in plasma [12]—of cognitive normal
(CN), MCI, and AD subjects. We included all ADNI subjects
whose variables were simultaneously available and had passed
the quality controls. Two sets were considered. The first one
contains 41 AD patients and 45 CN subjects, while the sec-
ond one is composed of 71 MCI subjects who have diagnosis
information after one year. The MCI subjects are split into 12
converters (cMCI, MCI patients who were diagnosed with AD
after 12 months) and 59 nonconverters (nMCI, MCI subjects
who remained diagnosed as MCI at the 12-month follow up).

C. Estimated Cost of the Biomarkers

The personalized classifier is able to account for the number
or cost of the biomarkers used for diagnosis [4]. The cost of
each biomarker in a clinical setting has been retrieved from the
“2010–2011 reference costs” for the National Health Service in
U.K. [14] or estimated after consultation with specialist units in
the U.K. The basic data (gender, age, years of education, and
body mass index) are considered readily available and they have
no cost. The MRI and PET features cost £163 and £844, in that
order. £169 is the estimation for the ApoE ε4 data, whereas the
measurement of isoprostanes and homocysteine is priced at £26
each. The cost of each other biomarker is set at £132 each.

III. METHODS

A. General Overview

Fig. 1 illustrates the approach. When a new subject arrives,
the immediate basic data are collected. These are the variables
available at this stage. The approach first tries to classify the new
subject before deciding which biomarker to order. To person-

Fig. 1. Block diagram of the personalized and cost-effective classification.

alize the classifier, the available variables are compared against
those of a Pool of already diagnosed people. This comparison
establishes which cases in the Pool are most similar to the new
subject. Weights are computed to reflect this: more similar sub-
jects in the Pool are assigned larger weights, thus affecting the
training of the classifier more. This approach is based on locally
weighted learning [1], [4], [15].

Then, a diagnosis is attempted. If it can be established with
enough confidence, then the process ends. Otherwise, the system
determines which additional biomarker may contribute most to
the diagnosis of the new subject by maximizing the diagnos-
tic information or diagnostic information per unit of cost it
provides. This process uses only the new subject’s available
variables and the Pool of known cases.

Once the system selects the next biomarker, it is acquired for
the new subject and added to the set of available variables. New
weights reflecting the similarity of this new set of available vari-
ables with those of the subjects in the Pool are calculated and the
classification is reattempted. This iterative process ends when
the confidence in the diagnosis exceeds a predefined threshold
or no more biomarkers are available.

The next example illustrates our approach. An 81-year-old
male with a body mass index of 24 and 18 years of education
arrives at the clinic. The clinician uses the system to assist in
the diagnosis. According to it, the probability of the AD based
on the patient’s basic data is 0.48. The clinician uses the sys-
tem to check which biomarker may be most informative for this
case. Comparing this subject with the Pool, the system recom-
mends PET and the clinician orders it, which shows low glucose
consumption. The system tries to classify the case and reports a
probability of AD of 0.68. The clinician decides to order another
biomarker. After comparing his data with the cases in the pool,
the system recommends MRI. This is acquired and it shows clear
evidence of cortical atrophy. With this information, the system
reports a probability of AD of 0.99. Considering the biomarker
evidence, the clinician decides to establish a diagnosis of AD.

The system implicitly refuses to label a subject when the
confidence is not high enough as the classification output is
the probability of disease, from which the crisp labels of
“Positive/Negative” cases are derived only once predefined
thresholds are exceeded.
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B. Personalized Classification

Instance-based classifiers (e.g., k nearest neighbors), also
known as memory-based classifiers, combine the information
from the training set with that of the new subject to create an
ad hoc classification model [1], [2], [4]. Other methods (e.g.,
neural networks) process all data in advance to create one-
decision model that is applied to all cases [1], [2], [4]–[7].
The former may be sensitive to noisy data, whereas the latter
are unable to do any personalization. An alternative is locally
weighted learning [1], [4], [15], which weights each training
instance by its distance to the new subject to reflect how rele-
vant each case in the training set is with regard to the subject
to be classified. Then, the weighted instances are used to train
a classifier [1], [15]. Locally weighted learning is similar to
memory-based classifiers because all computation is deferred
to the moment the subject to be classified arrives so that an
ad hoc decision rule is created. Thus, it allows us to tailor the
classifier to each patient by allocating the most importance in
training to the cases most similar to the patient.

In this letter, the weights for the locally weighted learning
vary linearly with the normalized Euclidean distance between
the new patient and the subjects in the Pool [1], ranging from 0
(totally dissimilar) to 1 (identical cases). Logistic regression
is used as a proof-of-concept base classifier for the locally
weighted learning [1]. Since the output of logistic regression
ranges from 0 to 1, it can be seen as the probability Pr that
the subject being classified is a positive case [1]. A confidence
threshold α is set [4]. If Pr is high enough (Pr > 1 – α, most
surely the patient’s diagnosis is positive) or low enough (Pr < α,
most probably the subject is a negative case) the diagnostic pro-
cess ends. Otherwise (α < Pr < 1 – α), there is not enough
confidence in the diagnosis, and more biomarkers are needed.

Using only the training set, all variables are normalized to the
[0,1] range and synthetic minority oversampling technique [1]
is used to equalize the frequency of the classes.

C. Selection of Additional Biomarkers

Feature selection is used to decide which variables are most
informative for a task [1], [2], [7]. The feature selection consid-
ered in most articles is difficult to be directly applied in clinical
settings because it assumes that all biomarkers are readily avail-
able and it is not personalized [4]. However, a personalized
approach based on the distance between the new subject and
known cases in the Pool may solve such problems.

The personalized approach selects the biomarkers one by
one. It starts by taking the already available data and weights
that account for the similarity between the subject and known
cases in the Pool. Ten runs of a tenfold cross validation in
the Pool of known cases are used to estimate the classification
performance of this “old” setting. Then, in turn, each other
potential biomarker available for the subjects in the Pool is
added to the set of features to create a “new” set of variables.
Ten runs of a tenfold cross validation are run again within the
Pool so that the difference between the “old” and the “new”
performance is computed for every biomarker. The one that
maximizes this difference is selected. The “old” and “new”

classifications are computed using the weights of the previous
diagnosis attempt because cases similar to the new subject will
tend to remain similar when more biomarkers are added.

The performance in this selection procedure is measured with
two criteria: 1) accuracy (ratio of correctly classified cases)
and 2) area under the ROC curve (AUC, probability that the
classifier ranks a randomly chosen positive instance above a
randomly chosen negative one) [1]. Since this feature selection
uses only subjects in the training set (Pool) who have all their
data available and the already measured variables of the new
case, it can be implemented in clinical settings.

This feature selection results in a sequence of biomarkers
likely to lead to a confident subject classification with a small
number of biomarkers. Alternatively, the biomarker costs can be
considered. The difference in performance between “old” and
“new” sets of variables is divided by the cost of the biomarker
being considered, leading to a measure of increase in perfor-
mance per unit of cost. Thus, the approach can operate in two
modes: 1) maximizing the performance (which tries to minimize
the number of biomarkers for diagnosis) or 2) maximizing the
performance per unit of cost (which tries to minimize the cost
of the diagnosis).

D. Evaluation

We evaluate our approach using leave-one-out cross-
validation. One participant is considered the new subject and
is left out for testing, while the remaining participants are con-
sidered the Pool of known cases (training set). This process is
repeated as many times as subjects, leaving a different one out
each time [1], [2]. The method is assessed against four criteria:
final accuracy, final AUC, number of biomarkers to achieve a
confident classification, and cost of such biomarkers. Two clas-
sification tasks are considered: 1) CN versus AD and 2) nMCI
versus cMCI, while the system operates in two modes: min-
imization of number or cost of biomarkers. Three confidence
thresholds α are studied (0.10, 0.15, and 0.20). These values
are chosen because the diagnostic accuracy of AD in common
clinical practice is about 80% [9], and it is expected that an ideal
biomarker for AD should have sensitivity and specificity of no
less than 80% [9].

For a fair comparison with bulk-data classifiers, a classical
logistic regression based on all variables is applied to both tasks.
We also compare our results with those of a system where lo-
gistic regression is combined with locally weighted learning,
but no feature selection is used at all. This is an intermediate
development where the decision rule is personalized but there
is no feature selection whatsoever.

IV. RESULTS

Table I contains the results, computed with leave-one-out
cross-validation, for the first task (CN–AD) in terms of final
accuracy and AUC values, and mean ± standard deviation of
the number and cost (in £) of the biomarkers used in diagnosis.
We tested several values of α and criteria to select the next
biomarker (AUC or accuracy). For a fair comparison, we also
classified the subjects using a logistic regression and a locally
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TABLE I
RESULTS FOR THE CLASSIFICATION OF CN VERSUS AD SUBJECTS GIVEN AS

FINAL AUC, FINAL ACCURACY, NUMBER, AND COST OF THE BIOMARKERS

CN vs. AD
Final 
AUC

Final 
Accuracy

Number of 
biomarkers

Cost of 
biomarkers

LR 0.900 0.849 11±0 £1914±0
LWL with LR 0.884 0.860 11±0 £1914±0

Personalized classifiers minimizing the number of biomarkers
AUC with α=0.20 0.887 0.826 1.94±1.89 £967±250
AUC with α=0.15 0.877 0.837 2.24±2.30 £1003±288
AUC with α=0.10 0.873 0.849 2.91±3.02 £1076±354

Accuracy with α=0.20 0.882 0.826 2.01±2.24 £905±343
Accuracy with α=0.15 0.879 0.837 2.34±2.60 £952±367
Accuracy with α=0.10 0.872 0.849 3.03±3.22 £1049±409

Personalized classifiers minimizing the cost of biomarkers
AUC with α=0.20 0.731 0.744 2.38±1.70 £334±333
AUC with α=0.15 0.774 0.767 2.79±1.89 £429±402
AUC with α=0.10 0.816 0.802 3.40±2.18 £558±477

Accuracy with α=0.20 0.758 0.756 2.35±1.52 £356±358
Accuracy with α=0.15 0.782 0.756 2.77±1.94 £424±419
Accuracy with α=0.10 0.837 0.791 3.47±2.45 £526±490

“LR” and “LWL” with LR” represent a logistic regression and a locally 
weighted learner with logistic regression as base classifier applied to all data. 
Other rows correspond to fully personalized classifiers with different values 
of α and criteria to select the sequence of biomarkers: AUC or accuracy.

TABLE II
RESULTS FOR THE CLASSIFICATION OF nMCI VERSUS cMCI PATIENTS GIVEN

AS FINAL AUC, FINAL ACCURACY, NUMBER, AND COST OF THE BIOMARKERS

nMCI vs. cMCI
Final 
AUC

Final 
Accuracy

Number of 
biomarkers

Cost of 
biomarkers

LR 0.667 0.676 11±0 £1914±0
LWL with LR 0.653 0.732 11±0 £1914±0

Personalized classifiers minimizing the number of biomarkers
AUC with α=0.20 0.631 0.732 2.32±2.01 £760±465
AUC with α=0.15 0.655 0.746 3.30±2.65 £903±484
AUC with α=0.10 0.583 0.746 4.21±3.23 £1035±527

Accuracy with α=0.20 0.638 0.746 2.27±2.05 £693±454
Accuracy with α=0.15 0.668 0.718 3.41±2.95 £893±528
Accuracy with α=0.10 0.586 0.746 4.65±3.54 £1075±556

Personalized classifiers minimizing the cost of biomarkers
AUC with α=0.20 0.496 0.648 3.18±2.29 £337±440
AUC with α=0.15 0.597 0.690 4.25±2.73 £527±586
AUC with α=0.10 0.582 0.746 5.32±2.82 £693±644

Accuracy with α=0.20 0.473 0.648 3.45±2.30 £350±408
Accuracy with α=0.15 0.624 0.676 4.56±2.94 £555±591
Accuracy with α=0.10 0.535 0.704 5.38±2.91 £689±624
The abbreviations and acronyms are those of Table I.

weighted learner with logistic regression as base learner but no
feature selection at all. Table II contains analogous results for
the task cMCI–nMCI.

For illustration purposes, Fig. 2 shows the average, across
subjects, of the cost of the biomarker selected at each iteration
in the classifier of CN versus AD with α = 0.15 when the system
minimized the number or the cost of the biomarkers using the
AUC as feature selection criterion.

V. DISCUSSION AND CONCLUSION

We tested a machine learning approach for personalized and
cost-effective detection of AD based on: 1) locally weighted
learning [1], [15] and 2) a sequential selection of biomarkers
to reduce their number or cost for confident diagnosis [4]. Two
classification tasks were addressed: CN–AD and cMCI–nMCI.
The approach is closer to the clinical setting, where not all
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Fig. 2. Average cost (in GBP) of the biomarker included at each iteration
for the personalized classification of CN versus AD subjects with α = 0.15
and AUC as feature selection criterion for the modes minimizing the number
(dashed black line) or cost (full gray line) of the biomarkers.

biomarkers are available at once. It also considers which previ-
ous cases are more relevant for the patient.

The personalized classifiers tried to minimize the number or
cost of the biomarkers included in the process. In both modes,
the classifications were considerably more cost-effective than
those based on all variables as there were important reductions
in the diagnosis cost. Minimizing the number of biomarkers led
to classifiers with fewer but more expensive features. Fig. 2 sug-
gests that expensive, but perhaps more informative, biomarkers
tended to be selected in the first iterations of the process that
minimized the number of tests. On the other hand, the sys-
tem optimizing the cost tended to select inexpensive biomarkers
first and only if these were not conclusive were more expensive
tests chosen. The overall classification performance was better
when the system tried to minimize the number of biomarkers.
This improvement came with relatively modest additional cost.
Nonetheless, both strategies still need a more detailed cost-
effectiveness analysis.

We also carried out a preliminary inspection of the evolution
of the criteria for biomarker selection with the number of iter-
ations (results not shown due to space constraints). The results
suggested that both accuracy and AUC are appropriate metrics to
select the features since the improvement in performance tended
to decrease monotonically from the first to the last iterations.

Our results are comparable to those computed in other cross-
validated studies. Schemes that used MRI, biochemistry, and
PET data simultaneously reached accuracies of about 0.93
and 0.75 for the tasks CN–AD and nMCI–cMCI, in that or-
der [5], [6]. Another study classified progression from MCI
to AD over a period of two years using MRI, biochemistry,
and cognitive scores simultaneously with accuracy of 0.67 and
AUC of 0.80 [7]. Yet, the results cannot be directly compared
due to differences in the datasets and biomarkers. As a proof
of concept, we considered only one marker from the MRI and
PET [10], [11], but the inclusion of more advanced brain imag-
ing features may improve the performance.

The Pool of known cases is a key part of the method. Interim
analyses (not shown due to space constraints) indicate that the
classification performance decreases when smaller subsamples
of the Pool are considered. Thus, it is essential to include a large
enough number of subjects in it. More extensive tests are needed
to determine how many cases should be included in the Pool. In
any case, in clinical practice, the Pool should be populated with
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local data, which are more likely to reflect local life-style and
environmental factors that might affect the disease.

According to current recommendations [13], the clinical di-
agnosis of AD and MCI should rely only on the patient’s cog-
nitive and behavioral symptoms. However, the biomarkers can
increase or decrease the certainty that such symptoms are due
to a pathological process of AD [8], [9], [13]. We conjecture
that the personalized approach may also contribute to the di-
agnostic process, conveying supporting evidence that the pa-
tient’s data match the profile of AD. This information is given
as a probability, which summarizes the patient’s data abnormal-
ities, and shown to the clinician at every iteration, thus allowing
him or her to monitor how the patient’s data fit with known
cases of the disease. The system assumes that not all biomark-
ers are available at once and it could be modified to account for
other criteria than just cost when selecting the biomarkers (e.g.,
their level of invasiveness or risk of side effects). This could
be done by deriving appropriate “modified costs” accounting
for the relative effects of such factors (e.g., twice as much risk
of side effects would lead to twice as much “modified cost”).
The “modified costs” could also incorporate the clinician’s prior
expertise to guide the system towards specific biomarker com-
binations. We acknowledge that the classification performance
of the system is not high enough to replace clinical diagnosis
and that it is sometimes lower than that obtained considering all
variables at once. However, this is not an inherent limitation of
the method because its aim is to support, and not replace, the
clinician, who must always make the final decision on clinical
diagnosis.

Some limitations will be considered in future work. First,
other classifiers [1] can be tested as base learners. Second, “mod-
ified cost” can be developed to account for additional factors in
the selection of biomarkers. Finally, an independent validation
set should be used to optimize α considering which values are
clinically acceptable. Yet, the small number of ADNI subjects
with all variables available limits our results and our ability to
address such issues in this letter.

To sum up, the results are promising and might be used to
support personalized diagnosis processes, while reducing the
number or cost of the biomarkers needed for diagnosis. Future
study is still needed but the framework presented in this letter
could be readily extended to other biomarkers and diseases.
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